Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI.

نویسندگان

  • Kevin D Corbett
  • James M Berger
چکیده

GHL proteins are functionally diverse enzymes defined by the presence of a conserved ATPase domain that self-associates to trap substrate upon nucleotide binding. The structural states adopted by these enzymes during nucleotide hydrolysis and product release, and their consequences for enzyme catalysis, have remained unclear. Here, we have determined a complete structural map of the ATP turnover cycle for topoVI-B, the ATPase subunit of the archaeal GHL enzyme topoisomerase VI. With this ensemble of structures, we show that significant conformational changes in the subunit occur first upon ATP binding, and subsequently upon release of hydrolyzed P(i). Together, these data provide a structural framework for understanding the role of ATP hydrolysis in the type II topoisomerase reaction. Our results also suggest that the GHL ATPase module is a molecular switch in which ATP hydrolysis serves as a prerequisite but not a driving force for substrate-dependent structural transitions in the enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution.

Type IIA and type IIB topoisomerases each possess the ability to pass one DNA duplex through another in an ATP-dependent manner. The role of ATP in the strand passage reaction is poorly understood, particularly for the type IIB (topoisomerase VI) family. We have solved the structure of the ATP-binding subunit of topoisomerase VI (topoVI-B) in two states: an unliganded monomer and a nucleotide-b...

متن کامل

Structural basis for topoisomerase VI inhibition by the anti-Hsp90 drug radicicol

Members of the GHL ATPase superfamily, including type II topoisomerases, Hsp90-class chaperones, and MutL, all share a common GHKL-type ATP-binding fold and act as nucleotide-controlled 'molecular clamps'. These enzymes' ATP-binding sites have proven to be rich drug targets, and certain inhibitors of type II topoisomerases and Hsp90 bind to this region and competitively inhibit these enzymes. R...

متن کامل

On helicases and other motor proteins.

Helicases are molecular machines that utilize energy derived from ATP hydrolysis to move along nucleic acids and to separate base-paired nucleotides. The movement of the helicase can also be described as a stationary helicase that pumps nucleic acid. Recent structural data for the hexameric E1 helicase of papillomavirus in complex with single-stranded DNA and MgADP has provided a detailed atomi...

متن کامل

Two-step colocalization of MORC3 with PML nuclear bodies.

Many functional subdomains, including promyelocytic leukemia nuclear bodies (PML NBs), are formed in the mammalian nucleus. Various proteins are constitutively or transiently accumulated in PML NBs in a PML-dependent manner. MORC3 (microrchidia family CW-type zinc-finger 3), also known as NXP2, which consists of GHL-ATPase, a CW-type zinc-finger and coiled-coil domains, is localized in PML NBs,...

متن کامل

The effect of 6-deoxyclitoriacetal from Clitoria macrophylla Wall. on rat liver mitochondrial respiration and ATPase activity

A Thai plant Clitoria macrophylla Wall. was claimed to possess some pharmacological activities. The phytochemical studies reported a rotenoid compound, 6-deoxyclitoriacetal, which exhibits the cytotoxic effect in several cell line experiments. This report was to study the effect of 6-deoxyclitoriacetal on rat liver mitochondria, which may associated to its cytotoxic phenomena. Mitochondrial sus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2005